Skip to main content

Momentum

Momentum

Momentum can be considered the "power" when an object is moving, meaning how much force it can have on another object. For example, a bowling ball (large mass) pushed very slowly (low velocity) can hit a glass door and not break it, while a baseball (small mass) can be thrown fast (high velocity) and break the same window. The baseball has a larger momentum than the bowling ball. Because momentum is the product of the mass and the velocity of an object, that both mass and velocity affect the momentum of an object. As shown, an object with a large mass and low velocity can have the same momentum as an object with a small mass and large velocity. A bullet is another example where the momentum is very-very high, due to the extraordinary velocity. Another beautiful example where very low-velocities cause greater momentum is the push of Indian subcontinent towards the rest of Asia, causing serious damages, such as earth quakes in the portions of himalayas. In this example, the subcontinent is moving as slow as few inches per year but the mass (imagine weight of India) of Indian-subcontinent is very high.
As defined by Newton, momentum of an object (p) is the product of the mass (m) and velocity (v) of the object. It is a vector quantity, which has both direction and magnitude. Its unit is kg m/s (kilogram metre per second) or N s (newton second). Momentum is sometimes referred to as linear momentum which is different from its related subject angular momentum.
Momentum is a conserved object, meaning that the total initial momentum of a system must be equal to the total final momentum of a system. Total amount of momentum remains unchanged.

Formula

In Newtonian physics, the usual symbol for momentum is the letter p ; so this can be written
where p is the momentum, m is the mass and v is the velocity
If we apply Newton's 2nd Law, we can derive
The meaning is that the net force on an object is equal to the rate of change in momentum of the object.
In order to use this equation in special relativitym has to change with speed. That is sometimes called the "relativistic mass" of the object. (Scientists who work with special relativity use other equations instead.)

Impulse

Impulse is the change in momentum caused by a new force: this force will increase or decrease the momentum depending on the direction of the force; towards or away from the object that was moving before. If the new force (N) is going in the direction of the momentum of the object (x), the momentum of x will increase; therefore if N is going towards object x in the opposite direction, x will slow down and its momentum will decrease.

Law of conservation of momentum

In understanding conservation of momentum, the direction of the momentum is important. Momentum in a system is added up using vector addition. Under the rules of vector addition, adding a certain amount of momentum together with the same amount of momentum going in the opposite direction gives a total momentum of zero.
For instance, when a gun is fired, a small mass (the bullet) moves at a high speed in one direction. A larger mass (the gun) moves in the opposite direction at a much slower speed. The momentum of the bullet and the momentum of the gun are exactly equal in size but opposite in direction. Using vector addition to add the momentum of the bullet to the momentum of the gun (equal in size but opposite in direction) gives a total system momentum of zero. The momentum of the gun-bullet system has been conserved.
A collision also shows conservation of momentum: if a car (1000 kg) is going right at 8 m/s, and a truck (6000 kg) is going left at 2 m/s, the car and truck will be moving left after the collision. This exercise shows why:
Momentum = Mass x Velocity
The car's momentum: 1000 kg x 8 m/s = 8000kgm/s (Going right)
The truck's momentum: 6000 kg x -2 m/s = -12000kgm/s (Going left)
This means their total momentum is -4000kgm/s. (Going left)

Comments

Popular posts from this blog

what is velocity?

what is velocity? Velocity is a  vector  expression of the  displacement  that an object or particle undergoes with respect to  time  . The standard unit of velocity magnitude (also known as  speed  ) is the  meter per second  (m/s). Alternatively, the centimeter per second (cm/s) can be used to express velocity magnitude. The direction of a velocity vector can be expressed in various ways, depending on the number of dimensions involved. Velocity is relative. Consider a car moving at 20 m/s with respect to the surface of a highway, traveling northward. If you are driving the car, the velocity of the car relative to your body is zero. If you stand by the side of the road, the velocity of the car relative to you is 20 m/s northward. If you are driving a car at 15 m/s with respect to the road and are traveling northward, and another car moving 20 m/s with respect to the road passes you in the same direction, that other car's velocity relative to you is 5 m/s northward. But if t

Crystallinity

Crystallinity Crystallinity  is a  physical property  of a  solid  that acts like a  crystal . The degree of crystallinity of a crystal has a big influence on  hardness ,  density ,  transparency  and  diffusion . Crystallinity can be measured using  x-ray diffraction , but  calorimetric  techniques are also commonly used. Examples would include: sodium chloride (table salt) aspakdonad Fiverr Seller Hi Friends Iam Mohamed Aspak And Iam studying in B.E Computer Science&Engineering Student 2nd Year And I need to work online In part time. I know Full editing of Photos and videos. i will Do my Extreme Best For Your Orders.I Can do Your Project within 2 or 4 hours And having youtube channel... :-)