Skip to main content

Crystallinity

Comments

Popular posts from this blog

Coefficient of thermal expansion

Coefficient of thermal expansion The  coefficient of thermal expansion  is used: in linear  thermal expansion in area thermal expansion in  volumetric  thermal expansion These characteristics are closely related. The volumetric thermal expansion coefficient can be measured for all substances of condensed matter ( liquids  and solid state). The linear thermal expansion can only be measured in the solid state and is common in engineering applications. Thermal expansion coefficients for some common materials The expansion and contraction of material must be considered when designing large structures, when using  tape  or  chain  to measure distances for  land surveys , when designing  molds  for casting hot material, and in other engineering applications when large changes in dimension due to temperature are expected. The range for α is from 10 -7  for hard solids to 10 -3  for organic liquids. α...

Angular frequency

Angular frequency In  physics ,  angular frequency.  ω. (also called the  angular speed ,  radial frequency , and  radian frequency)  is a measure of rotation rate. A high rate of angular frequency means something is turning very fast. The angular frequency is the  magnitude  of the vector quantity  angular velocity  which is also known as the  angular frequency vector   {\displaystyle {\vec {\omega }}} . Angular frequency is a measure of how fast an object is rotating It is useful in many areas of maths and science as it allows understanding of many properties of physical objects in our world. In  SI  units, angular frequency is measured in  radians  per  second , with dimensions t −1  since radians are dimensionless. Theory Angular freqency is often given in radians per second ( {\displaystyle t^{-1}} ) as it is easier to work with. In this way, the angular frequency is g...

Albert Einstein & Time Travel Theory

This lesson is on Albert Einstein and how his work applies to time travel theory. We'll investigate Einstein's theories of relativity, examples of distortion of time on Earth and in deep space, and the prospect of time travel for humans. What Is Time Travel? If you've ever watched a science fiction television show, or maybe read a book in that genre, you might have come across the image of a spaceship jumping into warp speed and zooming off into a twisted region of space to get to a faraway location. And all of this would have happened without any time passing. The spaceship's speed offers superhighways to far-off galaxies in an instant. Although right now these scenarios are fiction, the physics and math behind them are quite real. The formulas and theories we will learn about today suggest that time travel is possible. First, let's learn about the scientist that proposed these theories, Albert Einstein. Albert Einstein Albert Einstein  was a German phys...